α-helix is the most common type of secondary structure in proteins [1]. It is well known that α-helix mimetics are biologically active in a number of therapeutically significant protein-protein interactions (PPIs). Notable examples include HDM2/HDM4/p53 and the BCL-2 family of proteins.

Using extensive computer modeling supported by in vitro experiments, ASINEX has created a number of structurally sophisticated, novel molecules based on the tetrahydropyrane scaffold that work as effective epitope mimetics of more than 20 various helical protein interfaces (e.g. ATG3/ATG12, Bcl-2, Aquaporin 2, Protein S100-A9). Additionally, the resulting molecules demonstrate a favorable balance of lipophilicity and solubility due to the presence of hydrophobic groups and ionizable terminal moieties. The range of potential applications of α-helix mimic compounds in drug discovery extends beyond PPIs and includes Family B GPCRs, ion channels, and the rapidly emerging target class of solute carrier (SLC) proteins [2,3].

Signature Library 30

<table>
<thead>
<tr>
<th>Formats</th>
<th>Supplementary Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 compounds per plate</td>
<td>SL#30_α-Helix mimetics_06-16.sdf</td>
</tr>
<tr>
<td>0.1 mg; 1 mg; 2 mg dry film/powder</td>
<td></td>
</tr>
<tr>
<td>0.1 µmol; 1 µmol DMSO solutions</td>
<td></td>
</tr>
</tbody>
</table>

References:

Contact us:
USA: +1 336 721 1617 mparisi@asinex.com
Japan: +81-80-3401-9097 sota@asinex.com
Europe/Global: lsadovenko@asinex.com

asinex.com